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Abstract: An extra Abelian gauge symmetry is motivated in many new physics models

in both supersymmetric and nonsupersymmetric cases. Such a new gauge symmetry may

interact with both the observable sector and the hidden sector. We systematically investi-

gate the most general residual discrete symmetries in both sectors from a common Abelian

gauge symmetry. Those discrete symmetries can ensure the stability of the proton and the

dark matter candidate. A hidden sector dark matter candidate (lightest U -parity particle

or LUP) interacts with the standard model fields through the gauge boson Z ′ which may

selectively couple to quarks or leptons only. We make a comment on the implications of the

discrete symmetry and the leptonically coupling dark matter candidate, which has been

highlighted recently due to the possibility of the simultaneous explanation of the DAMA

and the PAMELA results. We also show how to construct the most general U(1) charges

for a given discrete symmetry, and discuss the relation between the U(1) gauge symmetry

and R-parity.
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1. Introduction

For many beyond standard models, discrete symmetries are invaluable ingredients to make

the models phenomenologically viable. For example, in the minimal supersymmetric stan-

dard model (MSSM), R-parity [1] is usually assumed for the proton stability. R-parity

also guarantees the stability of the lightest superparticle (LSP), which can be a good dark

matter candidate. It is argued, however, that discrete symmetries are vulnerable to Planck

scale physics unless they have a gauge origin [2]. An extra Abelian gauge symmetry is

also predicted in many new physics scenarios such as superstring, extra dimension, little

Higgs, and grand unification. Therefore, it would be useful to understand what discrete

symmetries are allowed as a residual discrete symmetry of the extra U(1) gauge symmetry.

The first systematic study of the U(1) residual discrete symmetry in a supersymmetry

(SUSY) framework was performed by Ibanez and Ross [3], where they found 3 independent

generators RN , LN , and AN . They studied all possible Z2 and Z3 discrete symmetries from

a U(1), and found that R2 (matter parity, which is equivalent to R-parity) as well as another

Z3 symmetry can be a residual discrete symmetry of the gauge symmetry, a.k.a. a discrete

gauge symmetry. Complementary and general discrete symmetries (ZN with N > 3) with

a U(1) origin were also studied [4, 5]. In a special case where the µ-problem [6] is addressed
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by a TeV scale U(1), the discrete symmetries were investigated in refs. [7, 8], which allow

R-parity violating U(1) models without fast proton decay.

Nevertheless, these discrete symmetries concerned only the observable sector (or the

MSSM sector). Many theories need exotic chiral fields for various reasons. For example, the

SUSY breaking mechanism requires additional fields. Also exotic fields are often necessary

to make the model anomaly free when an additional gauge symmetry is added. Even when

they do not have standard model (SM) charges, such hidden sector fields may have charges

under the extra U(1) gauge symmetry. The SM neutral hidden sector fields can be natural

dark matter candidates if they are stable.

It was shown that the same U(1) symmetry that provides the discrete symmetry for

the MSSM sector can also be the source of the discrete symmetry for the hidden sector

simultaneously [9]. Another independent generator UN was introduced for the hidden

sector discrete symmetry. The lightest U -parity particle (LUP) from the hidden sector is

stable under the U2 (U -parity), and it was shown that the experimental constraints from

the relic density and the direct detection can be satisfied in a large parameter space with

the LUP dark matter candidate [10].

However, the study in ref. [9] was not completely general since the hidden sector field

was assumed to be Majorana with SXX as a mass term, and only the factorizable extension

Zobs
N1

× Zhid
N2

was exploited. In this paper, we first generalize the discussion by including

the Dirac type hidden sector fields and possible nonrenormalizable mass terms. Dirac type

fields allow a discrete symmetry UN (with N > 2) while Majorana type fields allow only U2.

This leads to the possibility of multiple hidden sector dark matter candidates stable due to

the hidden sector discrete symmetry. We also start from the general form of the discrete

symmetry taking the factorizable case as a special limit. Then we present a method to

construct the most general U(1) charges for a given discrete symmetry of the MSSM and

hidden sector, with illustrations for specific examples. In appendix A, we discuss the U(1)

origin of the popular R-parity and its relation with the U(1) solution of the µ-problem,

which is one of the motivations to extend the supersymmetric standard model to include

an extra U(1). In appendix B, we discuss about the compatibility of discrete symmetries

with a leptonically coupling dark matter candidate.

2. Residual discrete symmetries from the U(1) gauge symmetry

In this section, we review the general discrete symmetries in the MSSM sector, which are

the remnant of an Abelian gauge symmetry. Starting with a U(1) gauge symmetry which

is broken spontaneously by a Higgs singlet S, one is generically left with a residual discrete

ZN symmetry. In a normalization where all particles Fi of the theory have integer U(1)

charges z[Fi], the value of N is directly determined by

N = |z[S]| . (2.1)

The resulting discrete charges q[Fi] of the fields Fi are then given by the mod N part of

their original U(1) charges

q[Fi] = z[Fi] mod N . (2.2)

– 2 –
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By definition the Higgs singlet S has vanishing discrete charge so that giving a vacuum

expectation value (vev) to S keeps the discrete ZN symmetry unbroken. Note that in

the case with N = 1, we formally obtain a Z1 which corresponds to no remnant discrete

symmetry.

The possible (family-independent) discrete symmetries of the MSSM1 which can emerge

from an anomaly free U(1) gauge symmetry have been identified and investigated in refs. [3 –

5]. Demanding ZN invariance of the MSSM superpotential operators

Wµ = µHuHd , (2.3)

WYukawa = yD
jkHdQjD

c
k + yU

jkHuQjU
c
k + yE

jkHdLjE
c
k + yN

jkHuLjN
c
k , (2.4)

one can express any discrete symmetry among the MSSM particles in terms of the two

generators

RN = e2πi(qR/N) , LN = e2πi(qL/N) , (2.5)

where the charges qR and qL are defined in table 1. Different discrete symmetries of

the observable sector are then obtained by multiplying various integer powers of these

generators

gobs
N = Rm

NLp
N . (2.6)

Compared to refs. [3, 4], the generator AN , which gives nonzero discrete charge to only

one of the two Higgs doublets, is omitted because its presence would forbid the µ term in

eq. (2.3). As the invariance of HuHd under ZN requires opposite discrete charges for Hu

and Hd, one can always find an equivalent set of discrete charges by adding some amount

of hypercharge y[Hi] such that q′[Hi] = q[Hi] + αy[Hi] = 0 simultaneously for i = u, d.

Thus requiring the existence of the µ term guarantees the absence of domain walls after

the electroweak symmetry breaking.

A more intuitive way of writing eq. (2.6) is obtained by defining the generator BN =

RNLN . The discrete charges qB of the MSSM fields under BN are related to the familiar

baryon number (B) by the hypercharge shift

qB[Fi] = −B[Fi] +
1

3
y[Fi] . (2.7)

Here the hypercharge is normalized so that y[Q] = 1. On the other hand, the discrete

charges qL of the MSSM fields under LN are nothing but the negative of the lepton number

(L)

qL[Fi] = −L[Fi] . (2.8)

Hence, the general discrete symmetry of eq. (2.6), written in terms of BN and LN ,

Zobs
N : gobs

N = Bb
NLℓ

N , (2.9)

can be understood in terms of the well-known baryon number and lepton number, with a

discrete charge

q = bqB + ℓqL mod N = −bB − ℓL + b(y/3) mod N . (2.10)

1We include 3 right-handed neutrinos Nc which do not change our argument.
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The exponents in eqs. (2.6) and (2.9) are related to each other by m = b and p = b + ℓ.

Specific values for b and ℓ define a ZN symmetry of the MSSM particles for which the

quantity Q = bB+ ℓL mod N is conserved. The lightest particle with nonzero Q value will

be stable by the discrete symmetry. The following discrete symmetries are some examples

obtained for given b and ℓ values.

(b, ℓ;N) gobs
N Q

(1, 0;N) BN B mod N

(0, 1;N) LN L mod N

(1, 1;N) BNLN (B + L) mod N

(1,−1;N) BNL−1
N (B − L) mod N

Note that with N = 2 the symmetry in the last line (B2L
−1
2 ) corresponds to matter parity

because (−1)B−L = (−1)3(B−L) for any SU(3)C invariant term for which B is always an

integer. As long as the spin angular momentum is conserved, matter parity is equivalent

to R-parity, Rp = (−1)3(B−L)+2s.

The discussion so far has been completely independent of any assumptions about the

origin of the discrete symmetry. Requiring that the ZN arises as a remnant of an anomaly

free U(1) gauge symmetry, we have to impose the discrete anomaly conditions of ref. [3]

(Note the cubic anomaly condition is disregarded [11].)

[SU(3)C ]2 − U(1) :
∑

i=3,3

qi = N · Z , (2.11)

[SU(2)L]2 − U(1) :
∑

i=2

qi = N · Z , (2.12)

[gravity]2 − U(1) :
∑

i

qi =

{
N · Z (N = odd) ,
N
2 · Z (N = even) ,

(2.13)

where the sums run over MSSM particles only. Additional exotic fields which may or may

not be singlets under the SM gauge group SU(3)C × SU(2)L ×U(1)Y do not contribute to

these anomaly conditions as long as they acquire a mass term when U(1) is broken, i.e. if

they are vectorlike under the SM gauge groups, while they are not under the U(1).

The consequence of eqs. (2.11)–(2.13) is that some sets of parameters (b, ℓ;N) cor-

respond to ZN symmetries which are discrete anomaly free while others are anomalous

and therefore ruled out (see refs. [3 – 5]). For instance, the symmetries of type Bb
N au-

tomatically satisfy eqs. (2.11) and (2.13) for all N and b. However, eq. (2.12) yields the

nontrivial constraint

∑

i=2

qi = b {Nf (3qB [Q] + qB[L]) + NH(qB[Hu] + qB [Hd])} (2.14)

= −bNf = 0 mod N , (2.15)

where Nf and NH denote the number of families of fermions and Higgs pairs, respectively.

For Nf = 3, we obtain only b = 0, ±N/3 as allowed choices for the cyclic symmetry. Unless
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symmetry Q U c Dc L Ec N c Hu Hd Xb Tb T c
b meaning of q conserved Q

RN qR 0 −1 1 0 1 −1 1 −1 0 0 0 y/3 − (B−L) (B−L)mod N

3qR − y −1 1 1 3 −3 −3 0 0 0 0 0 −3(B−L)

BN qB 0 −1 1 −1 2 0 1 −1 0 0 0 y/3 − B B mod N

3qB − y −1 1 1 0 0 0 0 0 0 0 0 −3B

LN qL 0 0 0 −1 1 1 0 0 0 0 0 −L L mod N

Ua,N qUa
0 0 0 0 0 0 0 0 −δab 0 0 −Ua Ua mod N

U ′

a,N qU ′
a

0 0 0 0 0 0 0 0 0 −δab δab −U ′

a U ′

a mod N

y (hypercharge) 1 −4 2 −3 6 0 3 −3 0 0 0

B (baryon no.) 1

3
− 1

3
− 1

3
0 0 0 0 0 0 0 0

L (lepton no.) 0 0 0 1 −1 −1 0 0 0 0 0

Table 1: Discrete charges of RN , BN , LN , Ua,N , U ′

a,N and their relation with B, L, Ua, and U ′

a.

b = 0 (which is not a real symmetry), we are led to the symmetry Bb
|3b| or B3. Similarly,

the discrete anomaly free symmetries of type Lℓ
N are only Lℓ

|3ℓ| or L3 (unless ℓ = 0). This

conclusion does not depend on whether there are massive SU(2)L charged exotics or not

since their corresponding mass term would imply vanishing contribution to the discrete

anomaly condition [12].

3. Hidden sector discrete symmetries

We now wish to extend the concept of discrete symmetries to the hidden sector or the

SM neutral particles.2 To do so, we introduce the generators Ua,N and U ′
a,N which assign

nontrivial discrete charges to, respectively, the Majorana (Xb) and the Dirac (Tb, T c
b )

particles of the hidden sector while the MSSM fields remain uncharged. Note that we label

hidden sector fields by indices (a, b, etc) which can refer to fields with different or identical

(i.e. family) U(1) charges.

The generators Ua,N , U ′
a,N as well as RN , LN , and BN — extended to include the

hidden sector particles — are shown in table 1. Introducing the discrete symmetry of the

hidden sector

ghid
N = UN =

∏

a,b

Uua

a,N U
′u′

b

b,N , (3.1)

the generalized discrete symmetry over the observable and the hidden sectors can be

written as

ZN : gN = gobs
N ghid

N = Bb
NLℓ

NUN . (3.2)

It is uniquely determined by the integer exponents (b, ℓ, ua, u
′
b;N), entailing the dis-

crete charges

q = bqB + ℓqL + uaqUa + u′
bqU ′

b
mod N . (3.3)

Summation over repeated indices is assumed as usual. Under the assumption that the

hidden sector particles acquire a mass after the gauge symmetry U(1) is broken down to

2The discrete symmetry argument does not change even if the Dirac type exotics are SM-charged.
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the discrete symmetry, invariance of the bilinear terms

Whidden = maXaXa + m′
bTbT

c
b (3.4)

under ZN constrains the exponents ua to

ua = 0 or N/2 , (3.5)

which makes it effectively a Z2 parity for Majorana type field (X).

Starting with an anomaly free discrete symmetry gobs
N in the observable sector, the

extended discrete symmetry gN can also originate in an anomaly free U(1) gauge symmetry,

regardless of the chosen values for ua and u′
b. In other words, due to the ZN invariance

of the mass terms in eq. (3.4), gN and gobs
N jointly either satisfy or do not satisfy the

discrete anomaly conditions of eqs. (2.11)–(2.13). Now we consider the case where ZN can

be factorized into two smaller discrete symmetries.

U(1) → ZN = ZN1
× ZN2

, (3.6)

where N = N1N2. This decomposition is only possible if N1 and N2 have no common prime

factor, i.e. they must be coprime to each other. Let us apply this method to separate the

discrete symmetries of the observable and the hidden sector. To do so, we have to assume

that the exponents b and ℓ are multiples of N2, while ua and u′
b are multiples of N1.

Eq. (3.2) can then be written as

gN = Bb
N1N2

Lℓ
N1N2

∏

a,b

Uua

a,N1N2
U

′u′

b

b,N1N2
= B

b/N2

N1
L

ℓ/N2

N1

∏

a,b

U
ua/N1

a,N2
U

′u′

b
/N1

b,N2
. (3.7)

This yields a Zobs
N1

symmetry in the observable sector and a Zhid
N2

in the hidden sector

with charges

qobs
ZN1

=

(
b

N2

)
qB +

(
ℓ

N2

)
qL mod N1 , (3.8)

qhid
ZN2

=

(
ua

N1

)
qUa +

(
u′

b

N1

)
qU ′

b
mod N2 . (3.9)

Both originate in the underlying ZN symmetry and are conserved separately. The symme-

try Zobs
N1

can be used to forbid certain processes whose external states comprise only MSSM

particles. On the other hand, the Zhid
N2

symmetry can stabilize the lightest U charged par-

ticle, leading to a dark matter candidate in the hidden sector [10, 9].

Depending on N2 as well as the ZN2
charges qhid

ZN2

, there could be even more than one

hidden sector particle stable due to the discrete symmetry. Assume that N2 =
∏

k nk,

where all factors nk are coprime to each other. Evidently, all but perhaps one nk are nec-

essarily odd. Then, the decomposition of the discrete symmetry in the hidden sector reads

Zhid
N2

= Zhid
n1

× Zhid
n2

× · · · . (3.10)

– 6 –
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What are the charges of the particles Xa and Tb under these individual Zhid
nk

? Due to the

invariance of the mass term for a Majorana particle Xa, its Zhid
nk

charge must be zero for

odd nk. In the case where there is an even nk, the particle Xa has charge

qZnk
[Xa] = −

ua

N1
·

nk

N2
= 0 or

nk

2
(nk = even) , (3.11)

under Zhid
nk

. For Dirac particles Tb, the Zhid
nk

charges qZnk
[Tb] are related by

−
u′

b

N1
=

∑

k

qZnk
[Tb] ·

N2

nk
mod N2 . (3.12)

Since all nk are coprime to each other, the charges qZnk
[Tb] are uniquely fixed by the value

of −u′
b/N1.

3 Consider for example three particles X, T1, T2, which have the Z60 charges

qZ60
[X] = 30, qZ60

[T1] = 24, qZ60
[T2] = 35, respectively. The Z60 symmetry breaks up into

Z4 × Z3 × Z5, leading to the following charges.

q[X] q[T1] q[T2] 60/nk

Z4 2 0 1 15

Z3 0 0 1 20

Z5 0 2 0 12

Z60 30 24 35 −

From eqs. (3.9) and (3.12), the Zhid
60 discrete charge for T2, for example, can be writ-

ten as

qhid
Z60

[T2] = 35 = −
u′

b

N1
mod 60 = 1 · 15 + 1 · 20 + 0 · 12 mod 60 . (3.13)

T2 is the only particle charged under the Z3 symmetry. Thus it is stable. Similarly T1

is stable because it is the only Z5 charged particle. Finally, the symmetry Z4 stabilizes the

lighter of the two particles X and T2. If this is T2, then there is no more particle stable due

to the discrete symmetry. In that way, it is possible that different Znk
symmetries stabilize

the same particle.

The important point in this discussion is that a single U(1) gauge symmetry can

effectively give rise to more than one discrete symmetry. One part of it might be used to

forbid unwanted processes involving the MSSM fields only, while other parts lead to stable

hidden sector particles, i.e. multiple dark matter candidates.4 This setup is schematically

sketched in figure 1. The discussion here is basically a generalization of that of ref. [9],

which dealt with only the Majorana case with a specific SXX mass term.

An example of the purely hidden sector discrete symmetry in the non-SUSY case can

be found in ref. [13], where an additional U(1) was introduced to explain the neutrino mass

and dark matter simultaneously.

3If there were a second charge assignment q̃Zn
k

[Tb] for the same value of −u′

b/N1, the sum
P

k
(qZn

k

[Tb]−

q̃Zn
k

[Tb])/nk would have to be integer. This however is only possible for qZn
k

[Tb] − q̃Zn
k

[Tb] = 0.
4Of course, we can have multiple dark matter candidates from the MSSM sector and hidden sector for

ZN = R2 ×U3, for example, which can provide the LSP dark matter (stable under R-parity) and the Dirac

type hidden sector dark matter (stable under U3).
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U(1) → Ztot
N = Zobs

N1
× Zhid

N2

MSSM sector Hidden sector

Zobs
N1

: Bb
N1

Lℓ
N1

Zhid
N2

: UN2

Figure 1: A unified picture of a single U(1) gauge symmetry that provides the discrete symmetries

for the observable sector and the hidden sector.

4. General U(1) charges

Having discussed the most general ZN symmetries that can arise from a U(1) gauge symme-

try, we now want to derive the most general U(1) charges within our setup. Including the

possibility that the superpotential terms of eqs. (2.3), (2.4), and (3.4) originate from higher-

dimensional operators, the underlying theory before U(1) breaking generally includes the

following terms5

Ŵµ = µ̂

(
S

M

)p

SHuHd , (4.1)

ŴYukawa = ŷD
jk

(
S

M

)d̃

HdQjD
c
k + ŷU

jk

(
S

M

)ũ

HuQjU
c
k +

+ ŷE
jk

(
S

M

)ẽ

HdLjE
c
k + ŷN

jk

(
S

M

)ñ

HuLjN
c
k , (4.2)

Ŵhidden = m̂a

(
S

M

)x̃a

SXaXa + m̂′
b

(
S

M

)t̃b

STbT
c
b , (4.3)

where we assume generation independent integer exponents with 0 ≤ d̃, ũ, ẽ, ñ and −1 ≤

p, x̃a, t̃b. M is some high mass scale (e.g. MGUT or MPl) at which new physics generates

the nonrenormalizable operators. Note that µ̂, m̂a, and m̂′
b are dimensionless parameters.

These terms yield severe constraints on the allowed U(1) charges of the chiral matter

fields. We find

YS : (1 + p)z[S] + z[Hu] + z[Hd] = 0 , (4.4)

YD : z[Hd] + z[Q] + z[Dc] + d̃z[S] = 0 , (4.5)

YU : z[Hu] + z[Q] + z[U c] + ũz[S] = 0 , (4.6)

YE : z[Hd] + z[L] + z[Ec] + ẽz[S] = 0 , (4.7)

YN : z[Hu] + z[L] + z[N c] + ñz[S] = 0 , (4.8)

YXa : (1 + x̃a)z[S] + 2z[Xa] = 0 , (4.9)

YTb
: (1 + t̃b)z[S] + z[Tb] + z[T c

b ] = 0 . (4.10)

5In addition to the factors
`

S
M

´

one could also have powers of
“

HuHd

M2

”

multiplying the effective super-

potential terms. For the sake of clarity, we omit this possibility.
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From this we obtain the general solution of U(1) charges in terms the continuous real

parameters α, β, γ, δ, τb




z[Q]

z[U c]

z[Dc]

z[L]

z[Ec]

z[N c]

z[Hu]

z[Hd]

z[S]

z[Xa]

z[Tb]

z[T c
b ]




=
α

3




1

−1

−1

−3

3

3

0

0

0

0

0

0




+
β

6




1

−4

2

−3

6

0

3

−3

0

0

0

0




+
γ

3Nf




NH(1 + p)

−3Nf ũ + (3Nf − NH)(1 + p)

−3Nf d̃ − NH(1 + p)

0

−3Nf ẽ

−3Nf ñ + 3Nf (1 + p)

−3Nf (1 + p)

0

3Nf

−3Nf (1 + x̃a)/2

0

−3Nf (1 + t̃b)




−
δ

3Nf




1

−1

−1

0

0

0

0

0

0

0

0

0




+




0

0

0

0

0

0

0

0

0

0

−τb

τb




.

(4.11)

In writing eq. (4.11), we have chosen a specific basis in which the first basis vector (cor-

responding to the parameter α) is B − L, the second (corresponding to β) is hypercharge.

The parameters τb are related to the exponents u′
b of the ZN symmetry by

u′
b = τb mod N . (4.12)

Furthermore, our basis is suitable to discuss the [SU(2)L]2−U(1) anomaly condition easily.

From

A221′ : Nf (3z[Q] + z[L]) + NH(z[Hd] + z[Hu]) + Aexotic
221′ = 0 (4.13)

we see that the parameters α, β, γ, and τb do not enter the anomaly condition. Plugging

in the U(1) charges of eq. (4.11), we obtain

δ = Aexotic
221′ . (4.14)

In the case where there are no exotic states which are charged under SU(2)L, the parameter

δ must therefore vanish due to the [SU(2)L]2−U(1) anomaly condition. Of course, to be free

from gauge anomaly, the other anomaly conditions should also be satisfied with a specified

particle spectrum. To be as general as possible we do not consider these full gauge anomaly

conditions in this paper. However, see refs. [14 – 17, 7, 18] for some examples.

Note that eq. (4.11) is a generalization of the discussion presented in refs. [7, 8] where

δ = p = ũ = d̃ = ẽ = 0. This general charge assignment is consistent with the following

well-known fact: assuming (i) Yukawa couplings with ũ = d̃ = ẽ = ñ = 0, (ii) no SM-

charged particles other than quarks and leptons, (iii) vanishing of the mixed anomalies

[SU(3)C ]2 −U(1) (yielding p = −1, see discussion in ref. [7], for example) and [SU(2)L]2 −

U(1) (yielding δ = 0), the most general generation independent U(1) which can be defined

on the quarks and leptons is a superposition of U(1)B−L and U(1)Y , the first and the

second basis vector of eq. (4.11) (see also refs. [19, 20]). Relaxing these conditions would

allow different U(1) symmetries.
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Disregarding τb, the parameters α, β, γ, and δ can be written in terms of the U(1)

charges as

α = z[Hd]−z[L] , β = −2z[Hd] , γ = z[S] , δ = −Nf (3z[Q]+z[L])+NH(1+p)z[S] .

(4.15)

In a normalization in which all U(1) charges are integer, the above four parameters (as

well as τb) are automatically also integer. Note that the contribution of δ can be absorbed

effectively in the number of Higgs doublet pairs. However, it is not guaranteed in general

that N eff
H would remain integer.

Eq. (4.11) is useful to obtain general U(1) charges in various limits. For example,

assuming ũ = d̃ = ẽ = ñ = 0, the quark-phobic case (z[Q] = z[U c] = z[Dc] = 0) requires

p = −1, β = 0, δ = Nfα.6 The lepton charges in this case are then given by

z[L] = −α , z[Ec] = α , z[N c] = α . (4.16)

The lepto-phobic case (z[L] = z[Ec] = 0) requires α = 0, β = 0. The quark charges in this

case are then given by

z[Q] =
NH(1 + p)γ − δ

3Nf
, z[U c] =

(3Nf − NH)(1 + p)γ + δ

3Nf
, z[Dc] = −

NH(1 + p)γ − δ

3Nf
.

(4.17)

Depending on value of p, we can categorize the models. Especially the p = 0 case can solve

the µ-problem by generating the effective µ parameter as

µ = µ̂ 〈S〉 . (4.18)

This is one of the most interesting cases for phenomenology, since the new gauge boson

Z ′ and the exotic colored particles which are necessary to cancel the [SU(3)]2C − U(1)

anomaly, are at the µ (TeV) scale, which can be explored by the LHC. A TeV scale Z ′

has implications also in cosmology such as providing a venue so that the right-handed

sneutrino LSP dark matter candidate or the LUP dark matter candidate can be a thermal

dark matter candidate through the Z ′ resonance [21, 10]. See ref. [22] for a review of this

model. It might appear that this type of U(1) cannot have matter parity (R-parity) as its

residual discrete symmetry, but there are ways to achieve this (see appendix A).

5. Construction of the U(1) charges for a given discrete symmetry

We discuss how to construct the most general U(1) charges, which have a given discrete

symmetry as its residual symmetry. The SM-charged exotics are highly model-dependent

and they may be obtained by scanning (see e.g. refs. [7, 8]). Here, we limit ourselves only

to the MSSM particles and the SM-singlet exotics (X, T ). The specific discrete symmetries

we want to cover in this paper are listed in table 2. An overall sign change does not affect

the discrete symmetry.

6See appendix B for further discussion related to DAMA/PAMELA results.
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symmetry Q U c Dc L Ec N c Hu Hd Xc Td T c
d meaning of q

B3 0 −1 1 −1 2 0 1 −1 0 0 0 y/3 − B

B3×
∏

a,b Uua

a,2U
′ u′

b

b,2 0 −2 2 −2 4 0 2 −2 −3uc −3u′

d 3u′

d 2y/3−2B−3uaUa−3u′

bU
′

b

B3 × R2 0 1 −1 −2 1 3 −1 1 0 0 0 −y/3 + B − 3L

Table 2: The discrete charges of B3, B3 ×
∏

a,b Uua

a,2U
′u′

b

b,2 , and B3 × R2. Since RN = BNLN , the

latter symmetry can be expressed as B3×R2 = B5
6L3

6 = B−1

6 L3
6 from which one can easily calculate

the discrete charges in terms of B, L, and y.

The general U(1) charges, before any discrete symmetry is assumed, are given in

eq. (4.11). Integer normalization is achieved through the coefficient α, β, γ, and δ. Then,

N of ZN is determined by z[S] fixing also the parameter γ = N as shown in eq. (4.15).

Since invariance under a hypercharge transformation is implicitly assumed throughout the

paper, the hypercharge column (with coefficient β) of eq. (4.11) has no effect on the dis-

crete symmetry. However, in order to obtain integer U(1) charges, β must be chosen in a

particular way.

As a general procedure, we suggest the following:

(i) Take γ = N of ZN .

(ii) Identify some terms which are allowed by the given discrete symmetry as well as the

SM gauge group.

(iii) Extract an additional condition about the U(1) charges from these allowed terms

(MSSM sector only).

(iv) Using this additional relation, obtain the U(1) charges from eq. (4.11), the most

general U(1) charge assignments before imposing any particular discrete symmetry.

(v) Require the U(1) charges to be integer.

The resulting set of equation is the most general U(1) solution that contains the given

discrete symmetry, up to arbitrary hypercharge shift and scaling. We illustrate our method

on three examples: B3, B3 × U2, and B3 × R2.

5.1 U(1) → B3

Here, we will consider only the MSSM sector disregarding the hidden sector fields

(X, T , T c).

(i) B3 dictates γ = 3.

(ii) To figure out the most general U(1) charge assignment that contains B3, use the fact

that B3 allows additional terms such as LLEc, LQDc, and LHd. These terms can

be written in a general form in the spirit of section 4. For example, LLEc can be

written as (
S

M

)n

LLEc , (5.1)

where n is an integer.
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(iii) This gives another condition on the U(1) charge assignment,

nz[S] + 2z[L] + z[Ec] = 0 , (5.2)

fixing the parameter α in eq. (4.11),

α = γ(n − ẽ) = 3(n − ẽ) . (5.3)

(iv) Then the general solution for the MSSM part of the B3 case can be written as




z[Q]

z[U c]

z[Dc]

z[L]

z[Ec]

z[N c]

z[Hu]

z[Hd]

z[S]




=
β

6




1

−4

2

−3

6

0

3

−3

0




+




−ẽ + n + NH(1+p)
Nf

ẽ − 3ũ − n + 3(1 + p) − NH(1+p)
Nf

ẽ − 3d̃ − n − NH(1+p)
Nf

3ẽ − 3n

−6ẽ + 3n

−3ẽ − 3ñ + 3n + 3(1 + p)

−3(1 + p)

0

3




−
δ

3Nf




1

−1

−1

0

0

0

0

0

0




,

(5.4)

with two free parameters.

(v) Now the U(1) charges should all be integers. Regarding the first component of

eq. (5.4), we therefore demand z[Q] ≡ IQ ∈ Z. This yields

β = 6(IQ + ẽ − n) − 2 ·
3NH(1 + p) − δ

Nf
, (5.5)

and eq. (5.4) takes the form




z[Q]

z[U c]

z[Dc]

z[L]

z[Ec]

z[N c]

z[Hu]

z[Hd]

z[S]




= IQ




1

−4

2

−3

6

0

3

−3

0




+ 3




0

−ũ + (n − ẽ) + (1 + p)

−d̃ − (n − ẽ)

0

−n

−ñ + (n − ẽ) + (1 + p)

−(n − ẽ) − (1 + p)

(n − ẽ)

1




+
3NH(1 + p) − δ

Nf




0

1

−1

1

−2

0

−1

1

0




.

(5.6)

Due to the requirement that all charges should be integer, the coefficient of the last

column, 3NH(1+p)−δ
Nf

, must be an integer. As already mentioned, the hypercharge

column (IQ) makes no difference in fixing the discrete symmetry. The second column

(with a coefficient of 3) cannot give any net discrete charges for a Z3 symmetry. So the
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last column carries all the information about the discrete symmetry. Its coefficient

must be integer, but not a multiple of 3 to yield a Z3 symmetry, i.e.

3NH(1 + p) − δ

Nf
= 3 · Z ± 1 . (5.7)

If eq. (5.7) is satisfied, the discrete charges can be easily read off from eq. (5.6) by

disregarding the hypercharge column and then applying eq. (2.2) to the remaining two

vectors. The result is B3, which becomes evident by comparing the third column to the

charges of B3 in table 2. Note that the discrete symmetry is independent of n and ũ, d̃, ẽ, ñ.

It is also independent of p as long as eq. (5.7) is satisfied for a given δ.

Using eq. (4.15), we can rewrite the condition of eq. (5.7) as

3z[Q] + z[L] = 3 · Z ± 1 , (5.8)

which forbids the operator QQQL effectively. This shows that B3 arises automatically as

a residual discrete symmetry of the U(1) if we require both:

1. presence of an (S/M)nLLEc term (or any effective renormalizable L violating term),

2. absence of an (S/M)mQQQL term (for any integer m).

Assuming δ = 0, NH = 1, and Nf = 3, the second requirement is equivalent to the require-

ment of the presence of an effective µ term (S/M)pSHuHd with p = 3 ·Z or 3 ·Z + 1. The

p = 0 case with an effective µ term (SHuHd) can belong to this category. In the MSSM-like

case with an original µ term (HuHd), i.e. p = −1 case, we need nonvanishing contributions

from SU(2)L exotics (δ 6= 0) in order to have B3 as a residual discrete symmetry.

The discrete charges are given by q = qB = −B + y/3 mod 3. Since the hypercharge

is conserved by itself, the quantity which is conserved by B3 is B mod 3, dictating the

selection rule

∆B = 0 mod 3 . (5.9)

Hence, proton decay (∆B = 1) and neutron-antineutron oscillation (∆B = 2) are abso-

lutely forbidden by the selection rule of B3 [23].

Unless R-parity is separately imposed, this is an R-parity violating model. The vi-

olation of R-parity implies distinguishable phenomenology. See refs. [24 – 29] for some

implications of the R-parity violation, for example. The proton is still protected by B3

even better than by R-parity [30]. The dark matter issue still needs to be addressed.

5.2 U(1) → Z6 = B3 × U2

Here we will consider the B3 symmetry for the MSSM sector, augmented with U -parity

(U2 =
∏

a,b Uua

a,2U
′u′

b

b,2 ) for the hidden sector.7

(i) Z6 fixes γ = 6.

7See ref. [9] for a special case of only Majorana hidden sector fields.
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(ii) In the MSSM sector, the LLEc term can be written as

(
S

M

)n

LLEc , (5.10)

where n is an integer.

In the hidden sector, the XaXa and TbT
c
b terms read

(
S

M

)x̃a

SXaXa ,

(
S

M

)t̃b

STbT
c
b , (5.11)

where x̃a, t̃b are integers.

(iii) For the MSSM sector we obtain

nz[S] + 2z[L] + z[Ec] = 0 , (5.12)

yielding the condition

α = γ(n − ẽ) = 6(n − ẽ) . (5.13)

The hidden sector mass terms in eq. (5.11) do not give any additional constraints on

the general solution because we already used these to derive eq. (4.11).

(iv,v) Demanding IQ ≡ z[Q] to be an integer, β is given by

β = 6(IQ + 2ẽ − 2n) −
2

Nf
(6NH(1 + p) − δ) , (5.14)

and eq. (4.11) takes the form




z[Q]

z[U c]

z[Dc]

z[L]

z[Ec]

z[N c]

z[Hu]

z[Hd]

z[S]

z[Xa]

z[Tb]

z[T c
b ]




= IQ




1

−4

2

−3

6

0

3

−3

0

0

0

0




+6




0

−ũ + (n−ẽ)+(1+p)

−d̃ − (n−ẽ)

0

−n

−ñ + (n−ẽ)+(1+p)

−(n−ẽ)−(1+p)

(n−ẽ)

1

0

0

−(1 + t̃b)




+
6NH(1+p)−δ

Nf




0

1

−1

1

−2

0

−1

1

0

0

0

0




+




0

0

0

0

0

0

0

0

0

−3(1+x̃a)

−τb

τb




.

(5.15)

Again the first two columns have no effect on the discrete symmetry, which is therefore

only determined by the coefficient of the third vector, 6NH(1+p)−δ
Nf

, as well as the

parameters x̃a and τb. The former defines the discrete charges of the MSSM fields
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while the latter two fix those of the hidden sector particles. As we are looking for

the case with B3 among the MSSM fields, we must require (see table 2)

6NH(1 + p) − δ

Nf
= 6 · Z ± 2 . (5.16)

On the other hand, the Z2 symmetry (U -parity) of the hidden sector necessitates

τb = 3 · Z , (5.17)

whereas x̃a remains unconstrained. It is worth noting that the discrete symmetry is

independent of t̃b.

With only one Majorana X and one Dirac T particle in the hidden sector, one can

have three different nontrivial scenarios:

• X is odd and T is even under U -parity, i.e. u = 1 and u′ = 0. This requires x̃ = 2 ·Z

and τ = 6 · Z. Reversely, if
(

S
M

)x̃
SXX with x̃ = 0, 2, 4, · · · exists, the hidden field

X automatically has odd U -parity.

• X is even and T is odd under U -parity, i.e. u = 0 and u′ = 1. Such a situation

requires x̃ = 2 · Z + 1 and τ = 6 ·Z + 3. The exponent t̃ in the mass term
(

S
M

)t̃
TT c

does not enter the discussion of the discrete symmetry.

• X is odd and T is odd under U -parity, i.e. u = 1 and u′ = 1. Here we need x̃ = 2 ·Z

and τ = 6 · Z + 3. In this case, the lighter of the two particles will be stable due to

U -parity.

Using eq. (4.15), we can rewrite the condition of eq. (5.16) as

3z[Q] + z[L] = 6 · Z ± 2 , (5.18)

which forbids the operator QQQL effectively. Therefore, a symmetry of type B3 ×
∏

a Uua

a,2

arises automatically as a residual discrete symmetry of the U(1) if we require:

1. presence of an (S/M)nLLEc term (or any effective renormalizable L violating term),

2. absence of an (S/M)mQQQL term (for any integer m),

3. presence of an
(

S
M

)x̃a
SXaXa term with x̃a = 0, 2, 4, · · · , resulting in Xa being odd

under U -parity.

Unfortunately, the case where Tb has odd U -parity cannot be discussed in terms of requiring

the presence or absence of some effective operators as discussed above.

The discrete charges are given by q = 2qB + 3uaqUa + 3u′
bqU ′

b
mod 6 = −2B + 2y/3 −

3uaUa − 3u′
bU

′
b mod 6. Since the hypercharge is conserved by itself, the quantity which

is conserved by B3 is B mod 3 and the one conserved by U -parity is uaUa + u′
bU

′
b mod 2,

dictating the selection rules

∆B = 0 mod 3 , ∆(uaUa + u′
bU

′
b) = 0 mod 2 , (5.19)

which prevents the proton and the LUP from decaying. Therefore, R-parity is not necessary

to address the stability of the proton and the dark matter candidate.
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5.3 U(1) → Z6 = B3 × R2

Here we will consider the B3 × R2 symmetry for the MSSM sector without any hidden

sector fields.8 As we can check with table 2, this symmetry allows
(

S
M

)n
(HuL)2 which can

provide an additional condition. Applying the general procedure, we find




z[Q]

z[U c]

z[Dc]

z[L]

z[Ec]

z[N c]

z[Hu]

z[Hd]

z[S]




= IQ




1

−4

2

−3

6

0

3

−3

0




+ 6




0

−ũ

−d̃ + (1 + p)

0

−ẽ + (1 + p)

−ñ

0

−(1 + p)

1




+
6NH(1 + p) − δ

Nf




0

1

−1

1

−2

0

−1

1

0




+ 3n




0

1

−1

0

−1

1

−1

1

0




.

(5.20)

To have the B3 ×R2, the last two vectors should results in the discrete charges of table 2.

Then we need
6NH(1 + p) − δ

Nf
= 6 · Z ∓ 2 , 3n = 6 · Z + 3 , (5.21)

where the second equation requires n to be an odd integer.

6. Summary and conclusions

In this paper, we systematically studied the residual discrete symmetry of an extra Abelian

gauge symmetry, which may interact with both the MSSM sector and the hidden sector.

Despite a common gauge origin, the discrete symmetry can have important implications

separately for the observable and the hidden sector, such as the stability of the proton

and dark matter. We provided the most general framework to discuss such a symmetry

including Majorana type and Dirac type hidden sector fields.

We also argued how to construct the most general U(1) symmetry for the MSSM sector

and hidden sector for a given discrete symmetry, illustrating our procedure for several

examples. Our results should be useful for U(1) model building. For example, in order to

make sure the proton and the Majorana hidden sector dark matter candidate are stable in

the absence of R-parity, one can, in a minimal framework with δ = 0, NH = 1, and Nf = 3,

just require (i) SHuHd (i.e. the effective µ term that solves the µ-problem with the U(1)

gauge symmetry), (ii) LLEc (a renormalizable L violating term), and (iii) SXX (a mass

term for the Majorana hidden sector field X). Then, B3 and U -parity are automatically

invoked in the MSSM and the hidden sector, respectively, as a residual discrete symmetry

of the common U(1) gauge symmetry (in the form of Z6 = B3 ×U2). Their selection rules

ensure absolute stability of the proton and the LUP dark matter.

In appendix A, we investigated the cases in which the U(1) gauge symmetry that solves

the µ-problem can contain matter parity (equivalent to R-parity) as a residual discrete

8See ref. [4, 31] for details about this symmetry.
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symmetry. This can provide a useful framework for R-parity conserving U(1) extended

supersymmetric models, without imposing a separate R-parity.

In appendix B, we made a comment on the relation between the discrete symmetry and

the leptonically interacting LUP dark matter candidate, which has been recently focused

on due to the possibility of the simultaneous explanation of the DAMA modulation and

the PAMELA results.

A. U(1) gauge origin of R-parity and the µ-problem solution

In this appendix, we investigate the conditions under which the R2 matter parity (equiva-

lent to the R-parity) can emerge as a residual discrete symmetry of the extra U(1) gauge

symmetry. The general U(1) charges of the MSSM sector and the hidden sector are given

in eq. (4.11). In order to unveil the discrete symmetry, let us introduce a new parameter

β′ which is related to the original parameters α, β, γ, δ by

β

6
=

β′

6
−

α

3
−

γ

3Nf
NH(1 + p) +

δ

3Nf
. (A.1)

Using this definition, eq. (4.11) can be rewritten to separate the columns into those which

do and which do not affect the discrete symmetry (in the RN and BN basis) among the

MSSM fields. In the following, we do not consider the the hidden sector fields, which are

irrelevant to our discussion.




z[Q]

z[U c]

z[Dc]

z[L]

z[Ec]

z[N c]

z[Hu]

z[Hd]

z[S]




= −α




0

−1

1

0

1

−1

1

−1

0




︸ ︷︷ ︸
qR

−
γNH(1 + p) − δ

Nf




0

−1

1

−1

2

0

1

−1

0




︸ ︷︷ ︸
qB

+
β′

6




1

−4

2

−3

6

0

3

−3

0




+ γ




0

−ũ + (1 + p)

−d̃

0

−ẽ

−ñ + (1 + p)

−(1 + p)

0

1




.

(A.2)

As mentioned before, the hypercharge (third) column does not influence the discrete sym-

metry at all since we require hypercharge shift invariance. The fourth column has no effect

on the discrete symmetry among the MSSM fields because their contributions to the U(1)

charges are integer multiples of γ = z[S] = N . Therefore only the first and the second col-

umn define the discrete symmetry among the MSSM fields. Comparing the entries of both

vectors with the discrete charges of table 1, we see that the first column corresponds to qR

and the second to qB . Hence, the type of Zobs
N symmetry depends only on the coefficients

of these two vectors, namely on α and γNH(1+p)−δ
Nf

. Our assumption of integer U(1) charges

requires both to be integer. Note that β′

6 is necessarily also integer and can be replaced by

IQ (see step (v) of the examples in section 5).
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In order to have a pure RN symmetry, the coefficient of qR should be ±1 mod N and

the coefficient of qB must vanish mod N , i.e.

α = γ · Z ± 1 ,
γNH(1 + p) − δ

Nf
= γ · Z . (A.3)

With p = −1, δ = 0, and ũ = d̃ = ẽ = ñ = 0, we have only a mixtures of the U(1)B−L

and U(1)Y . It always has the pure RN symmetry as a residual discrete symmetry as long

as α = γ · Z ± 1. With γ = 2, we obtain R2 parity. Relaxing ũ = d̃ = ẽ = ñ = 0 does not

change the discrete symmetry.

In order to solve the µ-problem with a TeV scale U(1) gauge symmetry, however, we

should take p = 0 (see section 4). With Nf = 3, eq. (A.3) can be written as

δ = γ(NH − 3 · Z) . (A.4)

Therefore we need additional SU(2)L exotic fields in the form of NH = 3 · Z generations

of Higgs pairs or some exotic doublet contribution δ, in order to have Zobs
N = RN while

solving the µ-problem with a common U(1) gauge symmetry.

However, it should be mentioned that there is another way for the U(1) to be a solution

to the µ-problem while having matter parity as a residual discrete symmetry, which may

not require additional SU(2)L charged particles. If the total discrete symmetry in the

MSSM sector has R2 as a part of it, i.e. Zobs
N = R2 ×ZN/2 (where 2 and N/2 are coprime),

both R2 and ZN/2 will be conserved independently. For instance, consider B3 × R2 as the

U(1) residual discrete symmetry as in section 5.3. With Nf = 3 and NH = 1, and no

SU(2)L exotics (δ = 0), eq. (5.21) gives 1 + p = 3 · Z ∓ 1, which allows p = 0 to solve the

µ-problem. Hence, one U(1) gauge symmetry can be the common source of the µ-problem

solution as well as R-parity.

B. Leptonically coupling dark matter

It is worth to note that various coupling limits are still compatible with discrete symmetries.

For instance, consider the B3 × U2 we studied in section 5.2. The quark-phobic case

(z[Q] = z[U c] = z[Dc] = 0) requires δ = 6(Nf (d̃− ẽ + n) + NH(1 + p)) and ũ + d̃ = (1 + p),

and IQ = 0. The lepton charges in this case, up to arbitrary scaling, are

z[L] = −6(d̃− ẽ+ n) , z[Ec] = 6(2d̃− 2ẽ + n) , z[N c] = 6(−ẽ− ñ+ n + (1+ p)) . (B.1)

In particular, a dark matter candidate that interacts with only leptons has been paid

good attention since it may be able to explain the DAMA annual modulation without

making conflict with other direct detection experiments [32]. This kind of dark matter

would be consistent with the property that can naturally explain the PAMELA results (for

example, see ref. [33]). PAMELA showed a significant positron excess [34] but no deviation

in the proton/antiproton data [35]. Since the LUP dark matter, which is stable under the

U -parity, interacts with the gauge boson Z ′ of the U(1) gauge symmetry, the quark-phobic
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case can satisfy this property. See ref. [36] for an illustration how such a dark matter can

explain the DAMA and PAMELA results.9

As B3 × U2 is compatible with the quark-phobic case, the existence of such a dark

matter may not only explain the DAMA and PAMELA results but also suggests why the

proton and dark matter are stable without introducing separate parities. This scenario

may be tested, for example, by the precise measurement of Z ′ coupling to leptons and

comparison with eq. (B.1).
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